951 research outputs found

    Measuring, analysing and artificially generating head nodding signals in dyadic social interaction

    Get PDF
    Social interaction involves rich and complex behaviours where verbal and non-verbal signals are exchanged in dynamic patterns. The aim of this thesis is to explore new ways of measuring and analysing interpersonal coordination as it naturally occurs in social interactions. Specifically, we want to understand what different types of head nods mean in different social contexts, how they are used during face-to-face dyadic conversation, and if they relate to memory and learning. Many current methods are limited by time-consuming and low-resolution data, which cannot capture the full richness of a dyadic social interaction. This thesis explores ways to demonstrate how high-resolution data in this area can give new insights into the study of social interaction. Furthermore, we also want to demonstrate the benefit of using virtual reality to artificially generate interpersonal coordination to test our hypotheses about the meaning of head nodding as a communicative signal. The first study aims to capture two patterns of head nodding signals – fast nods and slow nods – and determine what they mean and how they are used across different conversational contexts. We find that fast nodding signals receiving new information and has a different meaning than slow nods. The second study aims to investigate a link between memory and head nodding behaviour. This exploratory study provided initial hints that there might be a relationship, though further analyses were less clear. In the third study, we aim to test if interactive head nodding in virtual agents can be used to measure how much we like the virtual agent, and whether we learn better from virtual agents that we like. We find no causal link between memory performance and interactivity. In the fourth study, we perform a cross-experimental analysis of how the level of interactivity in different contexts (i.e., real, virtual, and video), impacts on memory and find clear differences between them

    The Unfolding of Digital Transformation in Pre-Digital Companies: A Meta-Case Analysis

    Get PDF
    Due to the growing dispersion of digital technology, many organizations engage in digital transformation. While digital transformation case studies have increased in the information systems and management domain, different ways in which digital transformation unfolds have been proposed. We perform a qualitative meta-analysis of case studies on digital transformation initiatives. From this analysis, we develop two core narratives (a dialectical and a teleological narrative) that we explain in-depth and derive two research avenues from our analysis. Thus, we are advancing the discussion on the unfolding of digital transformation by 1) summarizing existing case studies into two core narratives and 2) shifting the discussion from an explorative character towards a more explanatory approach to better understand how digital transformation unfolds within pre-digital organizations

    Spatial Distribution of Nucleosynthesis Products in Cassiopeia A: Comparison Between Observations and 3D Explosion Models

    Get PDF
    We examine observed heavy element abundances in the Cassiopeia A supernova remnant as a constraint on the nature of the Cas A supernova. We compare bulk abundances from 1D and 3D explosion models and spatial distribution of elements in 3D models with those derived from X-ray observations. We also examine the cospatial production of 26Al with other species. We find that the most reliable indicator of the presence of 26Al in unmixed ejecta is a very low S/Si ratio (~0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multiwavelength observations.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    NuGrid: Toward High Precision Double-Degenerate Merger Simulations with SPH in 3D

    Get PDF
    We present preliminary results from recent high-resolution double-degenerate merger simulations with the Smooth Particle Hydrodynamics (SPH) technique. We put particular emphasis on verification and validation in our effort and show the importance of details in the initial condition setup for the final outcome of the simulation. We also stress the dynamical importance of including shocks in the simulations. These results represent a first step toward a suite of simulations that will shed light on the question whether double-degenerate mergers are a viable path toward type 1a supernovae. In future simulations, we will make use of the capabilities of the NuGrid collaboration in post-processing SPH particle trajectories with a complete nuclear network to follow the detailed nuclear reactions during the dynamic merger phase.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    Nucleosynthetic Yields from "Collapsars"

    Get PDF
    The "collapsar" engine for gamma-ray bursts invokes as its energy source the failure of a normal supernova and the formation of a black hole. Here we present the results of the first three-dimensional simulation of the collapse of a massive star down to a black hole, including the subsequent accretion and explosion. The explosion differs significantly from the axisymmetric scenario obtained in two-dimensional simulations; this has important consequences for the nucleosynthetic yields. We compare the nucleosynthetic yields to those of hypernovae. Calculating yields from three-dimensional explosions requires new strategies in post-process nucleosynthesis; we discuss NuGrid's plan for three-dimensional yields.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    Difficulties in Probing Nuclear Physics: A Study of 44^{44}Ti and 56^{56}Ni

    Get PDF
    The nucleosynthetic yield from a supernova explosion depends upon a variety of effects: progenitor evolution, explosion process, details of the nuclear network, and nuclear rates. Especially in studies of integrated stellar yields, simplifications reduce these uncertainties. But nature is much more complex, and to actually study nuclear rates, we will have to understand the full, complex set of processes involved in nucleosynthesis. Here we discuss a few of these complexities and detail how the NuGrid collaboration will address them.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    Complete nucleosynthesis calculations for low-mass stars from NuGrid

    Get PDF
    Many nucleosynthesis and mixing processes of low-mass stars as they evolve from the Main Sequence to the thermal-pulse Asymptotic Giant Branch phase (TP-AGB) are well understood (although of course important physics components, e.g. rotation, magnetic fields, gravity wave mixing, remain poorly known). Nevertheless, in the last years presolar grain measurements with high resolution have presented new puzzling problems and strong constraints on nucleosynthesis processes in stars. The goal of the NuGrid collaboration is to present uniform yields for a large range of masses and metallicities, including low−-mass stars and massive stars and their explosions. Here we present the first calculations of stellar evolution and high-resolution, post-processing simulations of an AGB star with an initial mass of 2 M_sun and solar-like metallicity (Z=0.01), based on the post-processing code PPN. In particular, we analyze the formation and evolution of the radiative 13C-pocket between the 17th TP and the 18th TP. The s-process nucleosynthesis profile of a sample of heavy isotopes is also discussed, before the next convective TP occurrence.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    Nucleosynthesis Calculations from Core-Collapse Supernovae

    Get PDF
    We review some of the uncertainties in calculating nucleosynthetic yields, focusing on the explosion mechanism. Current yield calculations tend to either use a piston, energy injection, or enhancement of neutrino opacities to drive an explosion. We show that the energy injection, or more accurately, an entropy injection mechanism is best-suited to mimic our current understanding of the convection-enhanced supernova engine. The enhanced neutrino-opacity technique is in qualitative disagreement with simulations of core-collapse supernovae and will likely produce errors in the yields. But piston-driven explosions are the most discrepant. Piston-driven explosion severely underestimate the amount of fallback, leading to order-of-magnitude errors in the yields of heavy elements. To obtain yields accurate to the factor of a few level, we must use entropy or energy injection and this has become the NuGrid collaboration approach.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    44Ti and 56Ni in core-collapse supernovae

    Get PDF
    We investigate the physical conditions where 44Ti and 56Ni are created in core-collapse supernovae. In this preliminary work we use a series of post-processing network calculations with parametrized expansion profiles that are representative of the wide range of temperatures, densities and electron-to-baryon ratios found in 3D supernova simulations. Critical flows that affect the final yields of 44Ti and 56Ni are assessed.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US
    • …
    corecore